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INTRODUCTION

The hypothalamic suprachiasmatic nuclei (SCN) generate an 
internal neurogenetic rhythm in mammals with a periodicity of 
approximately 24 h. These rhythms are synchronized or entrained 
by external light-dark cycles through photosensitive retinal gan-
glionic cells via the retinohypothalamic tract. One of the ways in 
which the external manifestation of the circadian clock may be 
observed is locomotor activity. Based on when locomotor activity 
occurs, organisms are categorized into day-active (diurnal), night-
active (nocturnal), or active during twilight hours (crepuscular) 
[1]. Additionally, some animals are cathemeral, exhibiting activi-
ty throughout 24 h and may be considered arrhythmic [1]. A set 
of physiological, anatomical, and behavioral adaptations further 
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restrict an organism’s activity pattern to a clement spatio-tempo-
ral niche [2,3].

Photic input acts as a strong cue in the entrainment of the en-
dogenous clock. Besides this, photic input may also cause masking; 
in which the duration of the active period may be increased or 
sharply reduced [4,5]. Entrainment and masking enable the or-
ganism to align its behavior according to the external environment 
while retaining the ability to respond immediately to an unpre-
dictable or fluctuating environment [6]. The (endogenous) photic 
entrainment of the circadian clock is quite similar in diurnal and 
nocturnal rodents whereas the (external) response generated by 
masking is very different [7-9]. Generally, light increases the activ-
ity of a diurnal organism, referred to as positive masking, while 
suppressing it in nocturnal animals (negative masking) [4,10,11].
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Masking also depends on the genetic components of the circa-
dian rhythm and the duration of light exposure. For example, a 
Clock mutant nocturnal mouse exhibited lesser masking with a 
1-h light pulse than wild-type mice. Over a longer duration of ex-
posure to the light pulse (3 h), the mutant, however, exhibited a 
stronger masking response [12]. Masking and entrainment may 
be complementary ways to enable the best response to the spatio-
temporal niche that the organism occupies. 

In the contemporary context, artificial light at night (ALAN) 
may disrupt entrainment or cause unwanted masking. This is as-
sociated with a detrimental impact on human health, as well as 
disruptions in the physiology and lifestyle of wildlife [13,14]. The 
brightness of light at night is correlated with obesity and metabol-
ic disruption [15]; the incidence of breast [16], colorectal [17], 
and prostate cancer [18]; reduced melatonin secretion [19]; and 
disrupted sleep with impaired sleep quality [20,21]. 

Light at night can also disrupt predator-prey relationships, and 
reduce success/survival for the predator/prey. It has been shown 
that ALAN reduces anxiety and neophobia in nocturnal labora-
tory rodents [22-24], which would have reduced predator avoid-
ance and subsequently their survival in the wild. ALAN may also 
induce activity at night in diurnal mammals, increasing the chanc-
es of their exposure to nocturnal predators. By falsely signaling long 
days or masking short day signals, light at night can negatively 
impact seasonal reproduction, leading to reduced availability of 
predators and prey, further causing ecological imbalance [25,26]. 
There have been relatively fewer studies on the effect of ALAN in 
diurnal mammals. Therefore, we studied the locomotor activity 
response in diurnal squirrels, Funambulus pennantii, to light puls-
es at night of different intensities.

METHODS

The study used adult male Indian palm diurnal squirrels (F. pen-
nantii) that were of the same age, weighing 120±5 g and measur-
ing 30±2 cm in total length [27]. Squirrels were obtained from the 
agricultural field of Banaras Hindu University, Varanasi, Uttar 
Pradesh, India (longitude: 83°1'E; latitude: 25°18'N). Individual 
squirrels were kept on a 12:12 h light-dark (LD) in clear polysul-
fone cages measuring 43 cm×27 cm×18 cm with a thin coating 
of rice bran as bedding (light on at 06:00 h) with ad libitum access 
to food and water. The intensity of light during the 12:12 h LD 
cycle was maintained at 250 lux during the photophase and 0 lux 
during the dark phase. Animals were initially acclimated to the 
laboratory condition for a month before experimentation. Exper-
imental procedures were conducted in accordance with the guide-
lines of the Institutional Animal Ethical Committee of the Uni-
versity with its approval (No. F.Sc./88/IAEC/2016-17/1400), and 
the Guidelines of the Committee for the Purpose of Control and 
Supervision of Experimental Animals (CPCSEA) of the Govern-
ment of India and in conformity with international ethical stan-
dards [28].

Experimental design
Animals of all three groups (n=10/group) were housed indi-

vidually and transferred to separate experimental chambers 
(light and soundproof) having standard 12:12 h LD condition 
and introduced to individual cages equipped with running wheels 
(40.64 cm×50.80 cm×20.96 cm). After a week of stable wheel 
running (to allow for complete acclimation to running wheels 
and LD conditions of the chronocubicle), the squirrels of three 
different groups, i.e., group I, group II, and group III, were given 
a sham exposure at 0 lux (Supplementary Figure 1). Ten days lat-
er, they were exposed to 100 lux, 10 lux, and 1 lux of 3-h single 
white light pulse at night, respectively, between zeitgeber time 
(ZT) 12 and ZT15, i.e., from 18:00 to 21:00. These intensities were 
chosen to represent exposures decreasing by orders of magnitude 
starting from 100 lux, the approximate level of lighting at the cen-
ter of a road lit by street lamps in the vicinity of the study area at 
night. This approximated exposure to ALAN for squirrels dwell-
ing near humans. The procedures were performed with diffuse 
light from 7 W LED lamps (Philips, Gurgaon, India) dimmed us-
ing dimmer switches and butter paper to the required intensity at 
cage level (Hotek HD2102 Photometer probe, Hotek Technolo-
gies, Inc., Tacoma , WA, USA and C-700 Spectromaster, Sekonic 
Corporation, Tokyo, Japan). Following the exposure, the animals 
were allowed to run undisturbed for 7 days with maintenance as 
before.

Wheel revolution data were collected and transferred to a sep-
arate computer system for further analysis using a ClockLab (ver-
sion 6.1.05, Coulbourn Instruments, Whitehall, PA, USA) moni-
toring system with bin size set at 6 min. An ACT-553 7-channel 
breakout box and a 56-channel interface (CL-300) were used to 
record the wheel-running activity rhythm.

Double-plotted actograms were generated and chi-square peri-
odogram, average activity profile, total activity (wheel revolu-
tion/day), acrophase (peak of circadian rhythm), alpha (activity 
duration, α), amplitude, activity onset, the accuracy of onset, and 
phase angle difference (Ψ) were analyzed. The difference in the 
onset/offset of activity and onset/offset of the stimulus (lights on/
off), respectively were used to compute the phase angle differ-
ence. The time interval between successive onsets and offsets of 
activity represents the alpha. Accuracy is defined as the inverse 
of the standard deviation in the mean of daily phase angle differ-
ence, calculated from the difference between daily onset of activ-
ity and the onset of light. Accuracy is an indirect measure of the 
performance of, and strong coupling between, SCN neurons [29]. 
The total number of wheel revolutions 7 days prior to the day of 
exposure and 7 days after exposure was exported to Microsoft 
Excel 2016. Average daily onsets for the duration of the experi-
ment were plotted.

Statistical analyses
All data were represented as mean±standard error of the mean 

(SEM). Statistical analyses were performed using Microsoft Excel 
and GraphPad Prism version 8 (GraphPad Software, Boston, MA, 
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Figure 1. The circadian rhythm in voluntary wheel-running activity in squirrels. Shown here are representative double-plotted actograms 
before and after a 3-h 100 lux (A), 10 lux (B), and 1 lux (C) light pulse at night (indicated by a clear box and a red arrow) and chi-square 
periodogram analysis before and after pulse day (D, E, and F, respectively), indicating periodicity and amplitude of rhythm.
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USA). Student’s t-test and one-way analysis of variance (ANOVA) 
with Tukey’s honestly significant difference (HSD) as a post-hoc 
test was used to compare the difference between the control and 
light-pulse groups. Differences were considered significant if 
p<0.05.

RESULTS

Squirrels exhibited robust circadian rhythm in voluntary wheel-
running locomotor activity. The initial periodicity of the entrained 
rhythm was 24.0 h, corresponding to the 12:12 h LD cycle (chi-
square periodogram). 

Effect of 3-h exposure to different intensity of light pulse 
at night

Effects on circadian locomotor activity rhythm and 
total activity

White light pulses of 3 h at 100 lux, and 10 lux at night from 
ZT 12 to ZT 15 caused a transient increase (p<0.001, one-way 
ANOVA, F(120, 3)=35.64) in locomotor activity during the pulse 
period, thus causing positive masking, compared to the when no 
light pulse was administered (Figure 1A-C, Figure 2, and Supple-
mentary Figure 1). This increase in activity was dependent on the 
intensity of light exposure (Figure 2B, D, F), Spearman rho= 
0.756. Tukey’s HSD post-hoc test revealed that 1 lux light did not 

Figure 2. Representative figures showing the average pattern of wheel-running activity (counts/min) with time in hours. Cumulative av-
erage data are shown for 7 days during 12:12 h light-dark cycke when no light pulse was administered (A, C, and E; pre-exposure) and 
during the single day of 3-h light pulse of 100 lux, 10 lux, and 1 lux intensity at night between ZT 12 and ZT 15 (B, D, and F; experi-
mental). White and black bars indicate the duration of the light and dark phases, respectively. The onset of the light pulse at ZT 12 is 
indicated by the dotted line. Sham-exposed controls exposed to 0 lux between ZT 12 and ZT 15 are also represented (G, pre-sham ex-
posure; H, one-day post-sham exposure).
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cause a significant change in activity. The entrained period did 
not change significantly due to any of the light pulses (Figure 1D, 
E, F). There were no changes in these parameters in the sham-
exposed group (Supplementary Figure 1).

Total activity in terms of wheel revolution showed a significant 
increase in activity after exposure to 100 lux- and 10 lux-light 
pulses, groups, but not the 1 lux light pulse, compared to the du-
ration before exposure (p<0.01, p<0.05, and p>0.05, respectively) 

(Figure 3). 

Effects on the amplitude, accuracy of onset, and phase angle 
relationship

Squirrels exhibited a reduction in the amplitude of the circadi-
an rhythm in wheel running with 100-lux and 10-lux light puls-
es, but not when exposed to 1 lux pulses or sham exposure at 
night (F(32, 3) 12.89, p<0.01, one-way ANOVA with Tukey’s HSD 
post-hoc test) (Figure 4D). A reduction in the phase angle rela-
tionship with the light onset was seen in squirrels exposed to 100 
lux and 10 lux light (Figure 4C). One lux light pulses and sham 
exposures (0 lux) did not change the phase angle relationship 
(Figure 4C). Activity onset was found to be delayed in squirrels 
exposed to 100 lux and 10 lux pulse at night (Figure 4A and C), 
but not in 1-lux exposed and sham-exposed animals.

Accuracy of onset was found to be significantly reduced for di-
urnal squirrels exposed to 100 lux and 10 lux pulse of light at night 
compared to their respective controls (p<0.05 for both) (Figure 
4B). However, 1 lux light pulse at night caused no change in the 
accuracy of onset compared to the control (Figure 4B), although 
there was a sizeable reduction in mean accuracy. Similarly, expo-
sure to a 3-h light pulse at night of 100 lux and 10 lux intensity, but 
not 1 lux, caused a significant change in the phase angle relation-
ship from positive to negative compared to sham control (p<0.05) 
(Figure 4C). 
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Figure 3. Total activity before and after white light pulse at night. 
Significant increase in total activity measured in wheel revolution per 
day (y-axis) in response to the exposure of 3-h white light of 100 lux, 
10 lux, and 1 lux intensity, respectively at night between ZT 12 and 
ZT 15. Data are represented as mean±SEM (n=10/ group). *p<0.05; 
**p<0.01.

Figure 4. Average daily onsets of activity (A), the accuracy of onset (B), phase angle difference Ψ (phase angle relationship) (C), and 
change in amplitude (Δ amplitude) in arbitrary units (D); before and after the 3-h 100 lux, 10 lux, and 1 lux white light pulse or sham-ex-
posed control (dashed line) at night between ZT 12 and ZT 15 in Funambulus pennantii. In the average daily onset of activity graph, the 
day of the light pulse at night is indicated by a vertical bar. Data is represented as mean±SEM (n=10/group). Columns labeled ‘a’ repre-
sent data significantly different from columns labeled ‘b’, p<0.01, one-way ANOVA with Tukey’s post-hoc test; *p<0.05
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Effects on alpha and acrophase of the circadian rhythm
Alpha was found to be increased (F(32, 3)=19.5015, p<0.01, one-

way ANOVA with Tukey’s post-hoc test) in all three groups ex-
posed to 100 lux, 10 lux, and 1 lux light pulse at night compared to 
the alpha during the preceding days (Figure 5A). The acrophase 
of the circadian rhythm for diurnal squirrels kept under 12:12 h 
LD cycle was found to be at around 1 pm which transiently changed 
to around 3 pm in squirrels exposed to 100 lux and 10 lux pulse 
of white light at night. A small non-significant change in the ac-
rophase of the circadian rhythm was also found in squirrels ex-
posed to a 3-h light pulse of 1 lux intensity at night (Figure 5B).

DISCUSSION

We found that the strongly diurnal squirrel, F. pennantii, exhib-
ited positive masking when exposed to light at night of varying 
intensities. The onset of activity and acrophase were also delayed, 
adding to evidence that suggests that a single pulse of ALAN may 
delay the sleep and wake times in diurnal mammals. Thus, a di-
rect and acute effect of ALAN in the form of intensity-dependent 
positive masking was observed (Figures 1-6) [4]. Additionally, the 
artificial light pulse at night caused a reduction in the accuracy of 

onsets, dampening of the amplitude of the rhythm and a reduced 
phase angle relationship to light significantly with 100-lux and 10-
lux pulses. Reduction in these parameters is not prominent with 
1-lux light pulses, indicating that the robustness of the rhythm 
may be affected by light at an intensity of 10 lux or more. 1 lux rep-
resents an intensity greater than moonlight, but in our model, it 
does not appear to cause significant changes in the parameters 
studied, except for a transient increase in alpha (duration of activ-
ity). The report is in accordance with the findings of Bedrosian et 
al. [30], which suggest that the dampening of circadian rhythm 
occurs due to the suppression of the activity of the molecular 
clockwork within SCN. A reduced accuracy, as seen in our study, 
could be indicative of a loss of coupling between SCN neurons due 
to exposure to mistimed light at night.

While the onset accuracy of the rhythm was reduced by a 1 lux 
pulse of light, there was no significant difference overall, due to 
inter-individual variation. This shows that different members of 
a diurnal population may respond differently to ALAN, and this 
needs to be taken into account while performing ALAN-related 
studies. The increase in total average wheel running during light 
exposure shows the effects of arousal caused in this animal by a 
single episode of artificial light exposure at night. It is interesting 

Figure 5. Daily alpha (A) and acrophase (B) before and after 3-h white light pulse of intensity 100 lux, 10 lux, and 1 lux at night or sham-
exposed control (dashed line). The day of the pulse is indicated by a vertical bar. Data are represented as mean±SEM (n=10/group).
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to note that tropical diurnal mammals, which are regularly ex-
posed to daytime sunlight of 20,000 lux intensity and more, re-
spond strongly to a single exposure of 10 lux to 100 lux intensity, 
which is comparatively dimmer. 

Masking is a complex adaptive process and the response elicit-
ed by masking is different in day-active and night-active animals, 
as light is more likely to increase activity in the former, referred 
to as positive masking, and decrease it in the latter, referred to as 
negative masking [31-35]. In our case, the activity increased dur-
ing the pulse period (between ZT12 and ZT15) (Figure 5A and 
Figure 6), characteristic of positive masking. This is in agreement 
with findings in Nile grass rats, degus, Mongolian gerbils, and 
golden spiny mice [9,11,32-34,36-43]. Recently, a comparative 
study that involved exposure to the same light stimulus to diur-
nal Nile grass rats and nocturnal mice at the same time of day. 
This study found that the animals responded differently, i.e., light 
increased the activity of grass rats and suppressed it in mice [36]. 
The current findings also agree with other studies that demon-
strate duration- and intensity-dependent modulation of activity 
and the circadian clock by light at night [44,45]. In Figure 6B, it 
can be seen that exposure to 100 lux of white light is associated 
with increased activity throughout the duration of the light pulse, 
but such activity ceases after approximately ZT 13.75 (19:45 clock 
hours) with exposure to lower intensities of light. A light intensi-
ty-dependent arousal mechanism may thus be inferred. 

These lines of evidence suggest that in studies with translational 
value, it may be better to use diurnal, rather than nocturnal mod-
els. This would enable better extrapolation of results to predict 
what may happen in diurnal humans. Mistimed or nearly con-
stant light leads to the desynchronization of biological and physi-
ological rhythm resulting in several negative health consequenc-
es. Reports suggest that exposure to light at night, even at very 
low intensities, strongly inhibits melatonin secretion which may 
disrupt the overall synchrony of the central with the peripheral 
clock [46,47]. Apart from melatonin, glucocorticoid secretion is 
greatly affected by mistimed light exposure by altering the hypo-
thalamic-pituitary-adrenal axis [48]. Studies demonstrated that 
continuous light exposure can alter activity rhythm and ablate the 
circadian rhythm of glucocorticoids [15,49]. 

While we have not explored the mechanistic basis for the phe-
nomenon seen in these squirrels, a probable mechanism is known 
in the literature. Studies on nocturnal rodents have been used to 
characterize different light-responsive regions of the brain includ-
ing evaluation of cFOS expression, revealing that there are con-
siderable differences across brain regions, species, and strains. 
[50,51]. Fewer studies have examined light-induced cFOS acti-
vation in diurnal species and most of these studies focused exclu-
sively on SCN [52-54]. Apart from SCN, light induces cFOS ex-
pression in the peri-SCN region of diurnal Nile grass rats and the 
intergeniculate leaflet of degus [53,54]. Another study demon-
strated that cFOS expression in several brain regions including 
the SCN, ventral subparaventricular zone, intergeniculate leaflet, 
lateral hypothalamus, olivary pretectal area, and dorsal lateral ge-

niculate, increased in grass rats and decreased in mice [55] after 
exposure to light at night. These areas might produce acute effects 
on general activity through pathways extending to the structure 
that regulates the sleep/wake cycle, as light triggers sleep in noc-
turnal mammals (e.g. mice) and increases arousal or alertness in 
diurnal animals (e.g. humans) [31,56-58]. Similarly, in our case 
where a diurnal rodent was used, the light pulse between ZT12 
and ZT15 might be activating the center that is involved in alert-
ness and varying intensity of white light might be triggering dif-
ferent levels of activation. We did not study mechanisms of post-
ALAN arousal in this study, which is a limitation of the study.

While the sleep-promoting effects of melatonin are known 
[59-64], it has been shown that melatonin does not induce a 
sleep-promoting effect [65,66] in F. pennantii. Another study 
proved that pinealectomy did not alter general locomotor activi-
ty rhythm in Avicanthis niloticus. This suggests that melatonin, 
or its light-induced suppression, may not be contributing signifi-
cantly to the phenomenon observed.

Kumar et al. [65] demonstrated that squirrels exposed to a 
3.5:3.5 h cycle exhibited a prominent masking response. Addi-
tionally, exposure to light results in a significant increase in activ-
ity during the light phase compared to the dark, demonstrating 
that diurnal squirrels are positively masked by light. Two other 
studies have shown that the activity rhythm of diurnal rodents is 
masked by lighting conditions, with activity peaks occurring dur-
ing the light period of a 3.5 h ultradian cycle [1,36]. This agrees 
with our study in 12:12 h LD conditions, which better represents 
real-world conditions in the sub-tropical latitudes to which this 
squirrel is native.

Exposure to unnatural lighting schedules increases the risk of 
cancer, sleep, and mood disorders [16,67,68]. Furthermore, night-
time light exposure is associated with metabolic disorders and 
stress [13,14,15,30,49], as evinced by the measurement of associ-
ated biochemical and genetic parameters as well as cortisol. For 
instance, shift workers who experienced nighttime light illumi-
nation are at increased risk of cardiovascular disease and elevat-
ed body mass index [69-71]. Low intensities of light at night may 
inhibit body mass gain by delaying the time of food intake and 
limiting food access to the dark [15].

Our study clearly demonstrates the need for establishing a vari-
ety of diurnal models in the study of photic resetting of the circa-
dian rhythm. The effects of a single pulse of ALAN observed in 
our study are very different from known effects in nocturnal ani-
mals. Detailed comparative studies are needed to elucidate fur-
ther at molecular and behavioral levels to understand the neuro-
nal circuitry in both groups. 
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Supplementary Figure 1. The circadian rhythm in voluntary wheel-running activity in squirrels. Shown here is a repre-
sentative double-plotted actogram before and after a 3-h sham exposure (0 lux) at night on the 8th day, and chisquare 
periodogram analysis for the entire duration indicating periodicity (h) and amplitude of rhythm (arbitrary units). The 
sham exposure did not change the parameters studied.


